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ABSTRACT 
When a population experiences a reduction of its effective size, it generally develops a heterozygosity 

excess at selectively neutral loci, i.e., the heterozygosity computed from a sample of genes is larger  than 
the heterozygosity expected from the  number of alleles found  in  the sample if the population were at 
mutation drift  equilibrium. The heterozygosity excess persists only a certain number of generations  until 
a new equilibrium is established. Two statistical tests for  detecting a heterozygosity excess are described. 
They require measurements of the  number of alleles and heterozygosity at each of several loci from a 
population sample. The first test determines if the  proportion of loci with heterozygosity excess is 
significantly larger  than expected at equilibrium. The second test establishes if the average of standard- 
ized differences between observed and expected heterozygosities is significantly different from zero. 
Type I and I1 errors have been evaluated by computer simulations, varying sample size, number of loci, 
bottleneck size, time  elapsed since the  beginning of the bottleneck and level of variability of loci. These 
analyses show that  the most useful markers for bottleneck detection  are those evolving under  the infinite 
allele model (IAM) and they provide guidelines for selecting  sample sizes of individuals and loci. The 
usefulness of these tests for conservation biology is discussed. 

U NDERSTANDING the effects  of population bottle- 
necks on genetic variation has become increas- 

ingly important in population genetics, speciation the- 
ory, and conservation biology. Conservation biologists 
widely agree  that  population bottlenecks should be 
avoided in threatened species because they can increase 
rates of inbreeding, loss  of genetic variation and fixa- 
tion of  mildly deleterious alleles, and thereby reduce 
adaptive potential and increase the probability of  ex- 
tinction (FRANKEL and SOULE 1981; RALLS et al. 1988; 
HEDRICK and MILLER 1992; JIMINEZ et al. 1994; LANDE 

1994; MILLS and SMOUSE 1994; VRIJENHOEK 1994; 
FRANKHAM 1995a,b; LYNCH et al. 1995; but see BRYANT 
et al. 1986 and GOODNIGHT 1987). Populations that have 
recently suffered a severe reduction in size are espe- 
cially important  to identify for conservation because 
they are most likely to suffer increased risk of extinc- 
tion. 

Bottlenecks or  founder events may be  important in 
some modes of speciation (MAYR 1954; CARSON 1971; 
KANESHIRO 1976, 1980; TEMPLETON 1980). For exam- 
ple, colonization of a new area by  few individuals or a 
single mated female may cause  extensive genetic 
changes that lead to reproductive isolation (CARSON 
1971). Researchers are  conducting field studies to de- 
tect natural colonization and  founder events, and to 
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evaluate the effects  of bottlenecks on colonizing popu- 
lations (CARSON 1992; THORNTON 1992 and references 
therein). These studies would benefit from molecular 
methods  that can detect historical bottlenecks and help 
evaluate the magnitude and pattern of genetic change 
associated  with colonization. 

Many authors have  invoked the  “bottleneck hypothe- 
sis” to explain observations of  low genetic variation in 
their study species (BONNEL and SELANDER 1974; PEMB 
ERTON and SMITH 1985; MENKIN 1987; O’BRIEN et al. 
1987,1988  and citations therein; RANDI and APOLLONIO 
1988; GOTTELLI et al. 1994). However, conclusions that 
a population has suffered a severe bottleneck and loss 
of genetic variation are usually inferential because re- 
searchers seldom know historical population sizes. Con- 
sequently, it has been suggested that  the bottleneck 
hypothesis and  the effect of bottlenecks on genetic vari- 
ation have been overemphasized in the  literature (PI” 
et al. 1989; CARSON 1990; DINNERSTEIN and MCCRACKEN 
1990). 

Because historical population sizes and levels  of  ge- 
netic variation are seldom known, methods for de- 
tecting bottlenecks in the absence of historical data 
would be useful.  ROGERS and HARPENDING (1992) have 
developed a  method  for  detecting  ancient historical 
bottlenecks using DNA sequence  data  and  a genealogi- 
cal  analysis approach. The present  paper describes and 
evaluates methods  for  detecting  recent historical bottle- 
necks using allele frequency data. These methods take 
advantage of the high level  of polymorphism detectable 
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by recently discovered molecular markers (i.e., micro 
and mini satellites) and of the well developed theory 
of the effects of bottlenecks on loss  of alleles and hetero- 
zygosity from selectively neutral loci (NEI et al. 1975; 
DENNISTON 1978; WATTERSON 1984,  1986; MARWAMA 

and FUERST 1985; ALLENDOW 1986). 
We first  discuss the principles of the  method  for de- 

tecting bottlenecks, and  then  determine  the  theoreti- 
cally expected  relationship between number of alleles 
and heterozygosity for  a locus evolving under  the infi- 
nite allele model (IAM) and stepwise mutation  model 
(SMM) in a  bottlenecked  population. Next we describe 
two statistical tests for  detecting bottlenecks using em- 
pirical data. Finally, we apply the two statistical tests to 
four  example  data sets from the  literature and  conduct 
a statistical power  analysis to determine  the sample sizes 
of  loci and individuals necessary to detect bottlenecks 
using the two statistical tests. 

PRINCIPLE OF THE METHOD 

For selectively neutral loci, allele number  and fre- 
quency distribution in natural  populations result from 
an equilibrium between mutations and genetic drift. 
The parameters of  this “mutation  drift”  equilibrium 
are  the  mutation  rate and  the effective population size. 
When a  bottleneck occurs in a  population and  the effec- 
tive population size  is significantly reduced, it causes 
a correlative and progressive reduction of the allele 
number  and heterozygosity. As noted by NEI et al. (1975; 
see also DENNISTON 1978), allelic  diversity is reduced 
faster than is heterozygosity during  a bottleneck. As a 
consequence,  there is a  transient deficiency in the num- 
ber of alleles found  in  a sample of individuals (MARU- 
YAMA and FUERST 1985), i.e., the observed number of 
alleles in the sample is less than  the  number of alleles 
expected  from  the observed heterozygosity under  the 
assumption that  the  population is at  mutation drift 
equilibrium. Note that MARWAMA and FUERST’S compu- 
tations rely on  the assumption that loci  evolve according 
to  the IAM. With this model, each mutation  produces 
a new allele that is different  from all existing ones (Kr- 
MUM and CROW 1964). 

The allele deficiency is a complex function of four 
parameters:  the time since the beginning of the bottle- 
neck ( t ) ,  the effective population size ratio before/after 
the  beginning of the  bottleneck (a), the  mutation  rate 
( p )  of the locus and  the sample size  of genes ( n ) .  MARU 

YAMA and FUERST’S computations have  shown that  the 
magnitude of an allele deficiency first increases with t, 
reaches a maximum and  then decreases asymptotically 
toward zero, corresponding to a new mutation  drift 
equilibrium. The value of the maximum as  well  as the 
time at which it is reached depend  on  the  other  three 
parameters (a, p and n). 

Since recently bottlenecked  populations  exhibit an 
allele deficiency, a  potential test for  detecting bottle- 

necks might be based on detecting an allele deficiency 
in  a sample taken from  the  population under study. If 
a significantly high proportion of  loci exhibit an allele 
deficiency, one might  conclude  that  the  population is 
not  at mutation drift equilibrium due to a  recent reduc- 
tion of the effective population size. To test for an allele 
deficiency, one has to determine  the relationship be- 
tween the observed heterozygosity and  the  expected 
number of alleles. In theory, these two quantities  are 
related  through  the  parameter 8 (4Nfp). However,  it 
has been shown that  the estimation of 8 from the  heter- 
ozygosity  is biased (ZOUROS 1979) and that it is much 
more efficient to use the  number of alleles for  that 
purpose (EWENS and GILLESPIE 1974). A better solution 
would hence be to base a test on  the difference between 
the observed heterozygosity and  the heterozygosity  ex- 
pected from the observed number of  alleles. Popula- 
tions exhibiting  a significant heterozygosity excess would 
be considered as having experienced  a  recent  genetic 
bottleneck. Note that this  heterozygosity  excess should 
not be confused with the excess of heterozygotes. The for- 
mer  compares observed and expected heterozygosities, in 
the sense of NEI’s (1978, p. 177) gene  diversities, whereas 
the  latter  compares  the number of heterozygotes with 
Hardy-Weinberg equilibrium expectation. 

Heterozygosity  excess or deficit can occur after a re- 
cent  change of the effective population size but also if 
heterozygotes have a selective advantage or disadvan- 
tage. The comparison between observed and expected 
homozygosities (which is obviously equivalent to com- 
paring heterozygosities) has already been used as a test 
for  detecting selection (WATTERSON 1978). However, 
this test for homozygosity (or heterozygosity) deviation 
concerns specific  loci whereas all  loci are affected in 
the same way after a bottleneck. Therefore, tests for 
detecting  a  bottleneck  should be based on  the average 
behavior of a sufficiently large set of loci. 

Before devising  statistical  tests for  detecting  a  hetero- 
zygosity excess, it is important (1) to verify that  the 
conclusion that bottlenecks cause a heterozygosity  ex- 
cess under  the IAM can be extended to other mutation 
models and (2) to understand  the theoretically ex- 
pected  relationship between magnitude of  heterozygos- 
ity excess and observed number of alleles as a  function 
of the time elapsed since the  beginning of the bottle- 
neck. Because the relationship between heterozygosity 
and allele number  depends on the  mutational process, 
we evaluate two  classical models of mutation. We first 
evaluate the IAM because all the theoretical develop 
ments cited above  have been based on this model. We 
evaluate also the Stepwise Mutation Model (SMM) be- 
cause some important loci such as microsatellites may 
more closely  follow  this model (SMM, SHRIVER et al. 
1993; VALDES et al. 1993).  Under  the strict SMM, muta- 
tions change  the state of an allele by one step forward 
or backward  with equal probability (OHTA and K ” R A  
1973).  Thus  the SMM  allows for  mutation to existing 
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allelic states (homoplasy) and thereby results in fewer 
distinct allelic states than  the IAM for a given mutation 
rate. Another reason for evaluating the SMM is because 
this model and the IAM are  considered as two extremes 
over the  range of possible mutation models (CHAKRA- 
BORW and JIN 1992). 

Infinite  allele  model: WATTERSON (1984) provided 
formulae  for  determining  the relationship between het- 
erozygosity and  number of alleles at loci  evolving under 
the IAM in a bottlenecked population. WATTERSON'S 
formulae  are based on the following assumptions: (1) 
the  population evolves according  to  the Wright Fisher 
model of random mating; (2) before the bottleneck 
occurs, the  population of Ndiploid  (2Nhaploid) indi- 
viduals is at mutation drift equilibrium. From a given 
generation onward (corresponding to t = 0) , the size  of 
the  population is changed to Nl diploid (2N1 haploid) 
individuals. 

Following WATTERSON (1984) and noting 6' = 4Np 
and = 4N1p, the  number of different alleles, &, in 
a sample of n genes taken in the population at time t 
measured in units of  2N1 generations has the following 
expectation: 

E(&) = c p k  C e / ( j  + 6 - 1) 
k=O F k  j=1 

n 

+ c w ( j  + - 1) , (1) 
I =  k+ 1 1 

where 

pk = Ce-Ai+@, - l ) t /2  X (-l)j-k[(q + el - 1) 
n 

j= k 

x ( k  + @ l ) ( j -  ~ ,nb~l / [k! ( j  - k ) ! ( n  + &),I, 
X($ = x(x + 1) * * * (x  + j - 1) 

and xbl = x(x - 1) - * * (x  - j + 1) 

Similarly, the mean sample heterozygosity is  given by 

H =  1 - E(F) (2) 

where 
n 

E(F)  = x(z/n)2~(rj) 
i= 1 

= [z(el + n - l ) [ t~ i "Cpk  x .0  + (el  - e)s,,l 

x CE:wn - w L E -  + k - l ) ,q[(el  + n - I ) [ ~ I - I  , 

k=O { A  1=0 

I 
A = smaller of k and z, 

bk0 = 0 if 1 f 0 and SLo = 1 if 1 = 0. 

The unbiased observed heterozygosity in the bottle- 
necked population is equal to (1 - fl  n/(n - 1) and 
its expectation is H n / ( n  - 1) = H,. To compute  the 

corresponding  expected heterozygosity, Hl , in a popu- 
lation at mutation drift equilibrium, we first look for 
the value of M that satisfies EWENS'S (1972) formula, 

n- 1 

E(&) = C M / M  + 11, 
j=O 

and compute Hl = M/(1 + M). 
The difference H, - Hl measures the heterozygosity 

excess  (if H, > Hl)  or deficiency (if H,, < H I )  and 
E(&) is the (average) observed number of  alleles  in 
the sample. Figure 1A provides an example of the rela- 
tionship H, - HI  as a function of E(&) for a sample 
of 50 genes and various  times after a bottleneck has 
occurred. In this example, the  population size  was re- 
duced 100-fold (a  = 100) at the initiation of the bottle- 
neck. The curves linking points in Figure 1A corre- 
spond to a given  time after the bottleneck began. These 
curves  have been established with a set of different val- 
ues of 6' corresponding to a geometric series (ratio 2°.5) 
starting at 0.25 and  ending when the average number 
of  alleles is larger than 10. This figure shows that (1) 
all  values  of H, - HI  are positive (a heterozygosity  excess 
exists)  as expected for a bottlenecked population, (2) 
for a given time after the bottleneck began,  there is a 
rapid increase of the heterozygosity  excess  as a function 
of the  number of alleles, until the curve reaches a maxi- 
mum and  then slowly decreases back to zero, and (3) 
a maximum heterozygosity  excess  of  0.14 is obtained 
around Nl (0.5 X 2N,) generations after the bottleneck 
began. Note that  the largest heterozygosity  excess  oc- 
curs for values of 6' ranging from 1 (for t = 0.005) to 
8 (for 0.5 t I 2.5). These values  of 6' are reasonnable 
for microsatellite data  but  are larger than those usually 
found with  allozyme  loci. 

Stepwise  mutation  model: CHAKRABORTY and NEI 
(1977) provided formulae describing the  change of het- 
erozygosity for loci  evolving under the SMM in a popu- 
lation following a bottleneck. However, no explicit for- 
mula is available for calculating the  expected  number 
of  alleles in a sample. So we employed a computer simu- 
lation approach based on the coalescent process  of a 
sample of n genes (see HUDSON 1990), with a slight 
modification in the computation of the times T( 1) dur- 
ing which j lines of descent are  present in the genealogy 
of the sampled genes. With a bottleneck in  which popu- 
lation size immediately changes from N to Nl at time 
T ,  T(1) were computed as  follows. 

Starting from j = n to j = 2, let S(1) = T(n)  + T(n  
- 1)+ . . . + T ( j  + 1) and S(n)  = 0 and let q be an 
outcome of an  exponential law  with parameter c = j ( j  
- 1)/2 as  above. We took 

T(1) = q if S ( 1 )  + q < T 

T(1) = W/NI)Q  ifS(1) > T 

T ( j )  = ( T  - S(11) + (N/Nl)(S(11 + q - 7 )  

if S ( j )  < T and S ( 1 )  + q > T .  
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FIGURE 1.-Theoretical 
relationships between het- 
erozygosity  excess ( H ,  - HJ 
and  number of alleles in 
a  population at different 
times ( t )  after an immedi- 
ate  change of the popula- 
tion size in units of  2N, gen- 
erations (Ne = postchange 
effective population size). 
In cases A, B and D, the size 
was reduced by a factor of 
100 (a = 100) whereas in 
case  C,  it was increased by 
the same factor (a  = 0.01). 
In case A, loci  evolve  ac- 
cording to the LAM model. 
In cases B and C, they  fol- 
low the strict SMM. In case 
D, loci evolve under a 
mixed SMM model (90% 
one-step and 10% multistep 
SMM). A results from direct 
computations based on 
WATTERSON’S (1984) pa- 
per. B-D result from com- 
puter simulations (10,000 
replicates, see text for  de- 
tails). 

A gene phylogeny is obtained by randomly coalescing 
pairs of genes. Mutations on the edges of the phylogeny 
are simulated according to a Poisson law  with parameter 
2N1p = d1/2. Starting with an arbitrary state (allelic 
class) in the ancestor, the states of all nodes are deter- 
mined, taking into  account all mutations along  the 
edges. Under  the strict one step SMM, a  mutation 
changes the allelic state by + 1  or -1 with equal proba- 
bility.  Eventually,  allelic states of the n genes of the 
sample are  determined and the  number of different 
alleles and the heterozygosity in the sample are de- 
duced. 

For a given  value  of d l ,  the average number of differ- 
ent alleles [equivalent to E(&)]  and the average hetero- 
zygosity (equivalent to Ho) are  computed. The latter 
is then  compared to the heterozygosity (Hl) expected 
under mutation drift equilibrium and corresponding 
to the observed number of  alleles. We obtained this 
expected heterozygosity using the same simulation pro- 
cess in which the effective population size does not 
change (N = Nl, a = 1 ) .  More  precisely, we established 

the relationship at equilibrium between the  number of 
alleles and the heterozygosity for  a sample of the same 
size (n = 50) and by varying dl according a geometric 
progression (ratio 2°.5) starting at 0.0001 and increasing 
up to a value producing on average (over 20,000 repli- 
cates) > 12 different alleles. Expected equilibrium het- 
erozygosities  were then estimated from the average 
number of alleles by linear  interpolation. 

Figure 1B shows the average relationship between 
heterozygosity  excess and  number of alleles under  the 
strict SMM for a sample of 50 genes. As in Figure lA, 
each curve corresponds to a different time  following 
the initiation of the bottleneck. These lines have been 
established by varying 8, according to a geometric pro- 
gression of ratio 2 starting at 0.01 and  ending when the 
number of alleles exceeds 10. Every point is the average 
of 5000 simulation replicates. The shapes of the curves 
for the SMM (Figure 1B) are similar to those for the 
IAM (Figure 1A). The main differences are  the  hetero- 
zygosity  excess  is lower under  the SMM than  the IAM, 
the maxima of the curves are  obtained for lower  values 
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of the  number of  alleles and negative  values (heterozy- 
gosity deficiency) occur with larger values  of 8,. 

The fact that heterozygosity  deficiency can occur with 
loci evolving under  the strict one step SMM presents 
two potential problems for the detection of bottlenecks 
when using tests for heterozygosity  excess.  First, the test 
may not be significant even  in a bottlenecked popula- 
tion because some loci, evolving under the strict SMM 
and with large e,, exhibit heterozygosity  deficiency.  Sec- 
ond, by symmetry,  heterozygosity  excess might occur 
for SMM loci when the  population is expanding. As 
for the  latter  problem, Figure 1C strongly suggests that 
expanding populations produce a virtually undetect- 
able heterozygosity  excess under the strict SMM. [Note: 
Figure 1C results from the same simulation process as 
Figure 1B but with a population expansion instead of 
a population size reduction (a = 0.01 instead of a = 
loo)]. Consequently, a significant heterozygosity  excess 
for selectively neutral markers should be  detected only 
in populations having experienced a recent size reduc- 
tion. Note that in the case  of a population expansion, 
the heterozygosity  deficiency reaches much larger val- 
ues than after a population size reduction. 

However, since population size reduction results in 
both heterozygosity  excess and deficiency for markers 
evolving under  the strict SMM, the power  of a potential 
test for detecting bottlenecks might be largely reduced 
for these kinds of markers. It is then useful to study 
intermediate  mutation models to evaluate  in  which con- 
ditions bottlenecks can be  more easily detected by test- 
ing for heterozygosity  excess. Figure 1D illustrates the 
results obtained with a model in which 90% of muta- 
tions follow the strict SMM (one step SMM) and the 
remaining  10%  produce multistep changes (between 1 
and 20 steps, according  to a uniform distribution). This 
model still produces heterozygosity deficiency, but  at  an 
undetectable level whereas the maxima (heterozygosity 
excess) slightly increase. 

Since (1) the strict SMM is a rather unrealistic model 
for most of genetic markers, (2) a small deviation from 
this model reduces drastically the heterozygosity  defi- 
ciency in favor  of the heterozygosity  excess (Figure lD), 
and (3) even under the strict SMM, the heterozygosity 
excess resulting from a population size expansion is virtu- 
ally undetectable, a significant heterozygosity  excess at 
a set of  selectively neutral loci can still be taken as a 
strong indication that a recent  population size reduc- 
tion has occurred. 

DESCRIPTION OF THE TWO TESTS 

Now that  the  expected relationship between number 
of  alleles and degree of  heterozygosity  excess in a bot- 
tlenecked population has been established, we describe 
two statistical  tests for  detecting a heterozygosity  excess 
in data from natural  populations. 

Test 1: Because population bottlenecks induce a 

transient excess  of  heterozygosity, finding an observed 
heterozygosity that is higher  than  the expected (equilib- 
rium) heterozygosity for a large majority of loci  in a 
population suggests that this population may  have re- 
cently experienced a genetic bottleneck. A possible sta- 
tistical test for excess of heterozygosity  would  simply be 
a sign  test on the difference (observed - expected) 
heterozygosity  across  all loci in a population sample. 

Assume that a sample of n individuals has been scored 
for L polymorphic loci (monomorphic loci are useless 
since the observed and expected heterozygosities are 
identical, i e . ,  both  are equal to zero). If mutation drift 
equilibrium is assumed (i.e., no bottleneck),  there is 
approximately an  equal probability of getting a positive 
or a negative difference between the observed and  the 
expected heterozygosities. In contrast, if there has been 
a recent bottleneck in the  population, a positive  differ- 
ence (heterozygosity  excess) should be observed more 
often than is a negative difference. Hence, we could 
simply test if the  number of  loci for which there is a 
heterozygosity  excess is significantly larger than  L/2, 
assuming an a p i o r i  binomial distribution of parameters 
L and  1/2. However, in a finite sample, heterozygosity 
can have  only a finite number of  values and its probabil- 
ity distribution is discrete and asymmetric.  Conse- 
quently, for any locus there is a specific probability 
(slightly different from 0.5) of  heterozygosity  excess. 
This probability can be computed if  we  know the theo- 
retical distribution of the heterozygosity in a sample of 
n individuals assuming mutation drift equilibrium. As 
shown  below, the  latter distribution can be established, 
using computer simulations under both  the IAM and 
SMM mutation models. 

To compute  the probability (prL[ Q ) of having 1 loci 
among L for which there is a heterozygosity  excess, we 
take the usual rationale in  which the drawing of an 
additional locus is considered as a Markovian process 
in which states are  the  number of loci  showing an  heter- 
ozygosity  excess [ O ,  1 ,2 ,  . . . , Ll. Starting with zero locus 
and a probability distribution pro[ Q equal to [ l ,  0,   0 ,  
. . . , 01 , we used the following recurrence relationships 
for m = 1 to L 

prm[tl = ((1 - p 1 m )  prm- 1[41 + {pim prm- 111, 

where plm is the probability of  heterozygosity  excess at 
locus m. 

L 

Let (2 = c prL  [I1 
1=10 

Q is the probability of getting at least 1, loci  with 
heterozygosity  excess. If Qis lower than (say) 0.05, the 
null hypothesis (mutation drift equilibrium) is rejected 
in favor  of the hypothesis of an overall  heterozygosity 
excess and a recent genetic bottleneck. 

Test 2: Test 1 does  not take into  account  the magni- 
tude of the heterozygosity  excess/deficiency. Under  the 
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null hypothesis, the difference between the observed 
(Ho) and  the  expected heterozygosity (He) is the  output 
of a  random variable  with an expectation equal to zero 
for all  loci. If  we divide these differences by the  standard 
deviation of the  corresponding distributions of hetero- 
zygosities, we will get standardized deviates, i.e., random 
variables  following different distributions but all  having 
null expectation and standard deviation equal to one. 
The sum of these L standardized deviates approaches 
a Gaussian distribution with null expectation and vari- 
ance equal to L, when L increases by virtue of the Cen- 
tral  Limit theorem.  Therefore, Test 2 consists  in  com- 
paring  the statistics T2 to a N(0,l) distribution, 

L 

T2 = Lp0.5C{AJaL], 
I= 1 

with A1 = (Ho - He) for  the lth locus and  IT^ is the 
standard deviation of the distribution of H at  the lth 
locus. If the alternative hypothesis is only a heterozygos- 
ity excess (one-tailed test), we  will reject the null hy- 
pothesis (population  at  mutation drift equilibrium)  at 
the 5% level if T2 is larger than or equal to 1.645 (as 
indicated in any  table  of the normal distribution). 

Distribution of heterozygosity  under  the  null  hypoth- 
esis: For both tests, we need to establish probability 
distributions of the heterozygosity under  the null hy- 
pothesis (population  at mutation drift equilibrium). 
These probability distributions are actually conditioned 
by the observed number of alleles. Consequently, we 
cannot follow the previous approach  that assumes that 
the  parameter 8 is known, since a range of  values of O 
are compatible with the observed number of  alleles. 
Because the IAM and SMM have different properties, 
a different solution was applied to each model to take 
into  account these new requirements. 

For the I”, the  number of alleles is a  nondecreasing 
function of the  number of mutations in the genealogy 
of the sampled genes, ie., a new mutation increases the 
number of different alleles by zero (when it hits an 
edge already bearing a  mutation) or one (when it hits 
a new edge).  Therefore, to obtain a simulated sample 
with  exactly k, alleles, we first simulate a genealogy of 
the n genes in a  population at mutation drift equilib- 
rium (with edge lengths following the usual exponen- 
tial law). Then we add  one mutation at a time until 
there  are exactly k, different alleles in the sample. Since 
mutations are distributed according to a Poisson  law, 
the probability of one mutation affecting a given edge 
is proportional  to the relative length of  this edge. The 
distribution of  heterozygosities in samples simulated as 
explained above, is 8-free. 

The same rationale cannot  be applied to the SMM, 
because the  number of  alleles can increase, decrease 
or remain unchanged when adding  a new mutation. 
Therefore, we used the classic simulation process of the 
coalescent process (assuming mutation drift equilib- 
rium) with  two modifications: (1) only iterations lead- 

likelihood of 8 
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FIGURE 2.-Likelihood  of 6’ given the number of alleles ( k )  

for  a locus evolving under the SMM. Curves  have been o b  
tained through  computer simulation (200,000 replicates per 
value  of 6’) for  a sample of 50 genes. The coalescent process 
was simulated using 49 values  of 6’ ranging  from 0.001 to 1000 
and following a  geometric progression (ratio 10”’). 

ing to the observed number of  alleles (i .e. ,  the number, 
k ,  actually  observed in the sample) were considered 
and  (2) for each iteration,  the value of 8 was taken 
at  random following a probability distribution defined 
according to the following  Bayesian approach. Assum- 
ing  a uniform prior distribution of 8,  the condition k 
= ko is accounted  for by considering a posterior distribu- 
tion of 8 proportional to the probability of getting k, 
alleles  given 8. This was achieved by simulating the coa- 
lescent process of a sample of n genes using a set of 
values of 8 and counting, for each 8, the  proportion of 
iterations in  which k = k,. In practice, the following 
steps were performed. 

Step 1: Find extremes of the distribution of the likeli- 
hood of 8 given k, and n. For instance, starting with 
Omin = lo”, 200 iterations are performed. If none of 
them produces the correct  number of  alleles, a new 
emin is taken by multiplying the previous one by 10. This 
process is repeated until at least one iteration (out of 
200) produces the observed number of  alleles. The final 
minimum is then taken as the last emin divided by 10. An 
analogous procedure is conducted  to  get  the maximum. 

Step 2: Define a step between two  successive  values 
of 8. Preliminary studies have  shown that an almost 
symmetric distribution of 8 is obtained by varying 0 
along  a logarithmic scale (Figure 2). Consequently, a 
multiplicative step between two successive 6’s  was ap- 
plied in such a way that  the range Omin - Om, was  cov- 
ered with  12 different values of 8. The choice of 12 
is arbitrary but it provides an acceptable compromise 
between precision and speed of execution. 

Step 3: For each of the 12 O’s, the proportion of itera- 
tions (out of 1000) giving  exactly k, alleles is computed. 

After completing these three steps, the coalescent pro- 
cess  was simulated taking at random one of the 12 pre- 
ceeding 8’s with a probability proportional to the propor- 
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TABLE 1 

Example of computations  used  to  test for an heterozygosity excess at  nine  polymorphic  loci 
in the  Epping  population of the hairy-nosed  wombat 

2007 

Locus 105 102 25CA  51CA  54CA  55A  67CA  68CA  71CA 

Empirical  data 
Sample size (haploid  genomes) 48 40 32 56 56 56 56 56 56 
Heterozygosity  observed ( H o )  0.496 0.409 0.653 0.195 0.659 0.382 0.520 0.673 0.299 
No. of alleles  observed (lz,) 2 2 3 2 3 2 3 3 2 

Average  heterozygosity ( H e )  0.22 0.23 0.40 0.20 0.35 0.21 0.36 0.35 0.21 
Standard  deviation (SD) 0.17 0.17 0.16 0.16 0.17 0.17 0.18 0.18 0.17 
Standard  deviate ( [ H ,  - H,]/SD) 1.72 1.08 1.50 -0.07 1.69 1.08 0.85 1.76 0.56 
Probability ( H  > He)  0.45 0.41 0.54 0.42 0.51 0.41 0.52 0.52 0.43 

Average  heterozygosity ( H e )  0.26 0.26 0.48 0.24 0.43 0.24 0.44 0.43 0.25 
Standard  deviation (SD) 0.17 0.17 0.14 0.17 0.16 0.17 0.16 0.16 0.17 
Standard  deviate ( [ H o  - H,]/SD) 1.41 0.88 1.25 -0.26 1.41 0.88 0.50 1.52 0.30 
Probability ( H  > He)  0.46 0.51 0.59 0.46 0.58 0.46 0.59 0.58 0.49 

Data from TAYLOR et al. (1994). He and SD are  the average and  standard  deviation of the  distribution of the heterozygosity 
( H )  obtained in simulated  samples  with a size and  number of alleles identical  to  the  empirical  data,  assuming mutationdrift 
equilibrium  (null  hypothesis).  Prob ( H  > He) is the  probability  that  the  heterozygosity ( H )  is larger  than  the average (He)  under 
the null hypothesis  [Note  that  if the distribution is symetrical,  Prob ( H  > He) will  be 0.51. All estimates are based on computer 
simulations  with 1000 replicates. All  heterozygosities (Ho, H, and H) are  computed  according to the  formula of NEI (1987): [n/ 
(n - l ) ]  [ 1 - C(pt)'] in which n. is the  number of haploid  genomes  and pi the  allele  frequencies. 

IAM 

SMM 

tion computed in step 3, disregarding all iterations that 
produce  a  number of  alleles different from 12,. 

For each locus, the average heterozygosity and stan- 
dard deviation can be estimated through  the above sim- 
ulation processes with a level  of precision controlled by 
the  number of simulation replications. 

EXAMPLES 

Next we  give examples of  how to apply Test 1 and 
Test 2 to  each of four empirical data sets published in 
the  literature. The  four  data sets were chosen because 
they correspond  to  three situations of historical evolu- 
tion of population size (reduction,  expansion or sta- 
tionarity). 

An example of a  population having experienced  a 
recent  bottleneck is the  endangered species Lasiwhinus 
krefftii, the  northern hairy-nosed wombat. The only re- 
maining  population  (Epping Forest population in 
Queensland, Australia) has been  reduced to fewer than 
100 individuals. TAYLOR et al. (1994) have scored 16 
microsatellite loci, of  which nine are still polymorphic 
in a sample of 16-25 individuals. Data are summarized 
in  Table 1. 

For each polymorphic locus, simulations were per- 
formed  to simulate gene genealogies with a sample size 
and a number of alleles identical to those in  the data. 
One thousand simulation replicates were conducted 
under  both mutation models and assuming mutation 
drift  equilibrium. In each  replication, and  under each 
mutation  model,  the unbiased heterozygosity (NEI 
1978) was computed.  The average and  standard devia- 
tions of these distributions were then estimated, as  well 

as the  proportion of  heterozygosity  values that were 
larger  than  the average (Table 1). Note that  the  latter 
proportion, which provides an estimate of the probabil- 
ity  of heterozygosity  excess under  the null hypothesis 
for  each locus, varies around 0.5 (between 0.4 and  0.6). 

Under  both mutation models, the observed heterozy- 
gosity exceeds the average of the  corresponding distri- 
bution of heterozygosities expected  at equilibrium for 
eight of the  nine loci in  the sample from the Epping 
wombat population. The probability of getting  at least 
eight loci  with  heterozygosity  excess in an equilibrium 
population is obtained by summing  the last two  col- 
umns of Table 2 (eight  and  nine  loci). This sum is 0.01 1 
and 0.026, under  the IAM and  the SMM, respectively, 
suggesting that  the  population significantly deviates 
from equilibrium expectations. 

The statistic T2 is equal to 3.43 and 2.64, respectively, 
under  the IAM and  the SMM. The corresponding  prob- 
abilities are  equal to 0.00030 and 0.0042. Thus,  both 
Test 1 and Test 2 reject the hypothesis of mutation- 
drift  equilibrium  in  the  Epping  population of wombats. 
Since, all  loci except one exhibit  a heterozygosity  ex- 
cess, these data  support  the conclusion of a  recent bot- 
tleneck in this population. 

For the second example, we applied  both tests to a 
population of southern hairy-nosed  wombats (L .  Zati- 
pons) that is not known to have been  bottlenecked re- 
cently (Brookfield population,  data from TAYLOR et al. 
1994). We found  that  under  the IAM model, all 14 
polymorphic microsatellite loci  show a heterozygosity 
excess: this is highly significant (P = 0.00037). Test 2 
results in the same conclusion ( T2 = 3.54, P = 0.00020). 
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TABLE 2 

Probability  distribution of the  number of loci with a heterozygosity excess assuming  mutation-drift 
equilibrium  in  the  Epping  wombat  population 

No. of loci with a heterozygosity  excess 

0 1  2  3  4  5  6 7 8  9 

IAM (Prob X 10,000) 33 269 955 1968 2594 2266 1313 487 105 10 
SMM (Prob X 10,000) 12 120 539 1404 2335 2573 1877 875 237  28 

This table is obtained by combining  the  Probabilities ( H  > He) from Table 1. For  instance,  the  probability of getting  nine 
loci  with a heterozygosity  excess is simply the product of the  probabilities ( H  > He)  for all nine loci (4 text for the general 
rationale). This table shows that  the  probability of finding a heterozygosity  excess at at least eight loci in the sample of the 
Epping wombat population is 0.0105 + 0.0010 under the IAM and 0.0237 + 0.0028 under  the SMM. 

Under  the SMM, 10 loci  show a heterozygosity  excess. 
Ten of 14 loci is not significant under Test 1 ( P  = 0.25), 
but Test 2 provides a significant result ( T2 = 1.81, P = 
0.035). Three tests out of four reject the hypothesis of 
mutation drift equilibrium in  this population, sug- 
gesting here too a  recent  reduction in population size. 

The next example is drawn from the microsatellite 
study  of the Sardinian human  population (DI RIENZO 
et al. 1994). The genetic variability  of this population 
has been well documented using traditional markers, 
nuclear DNA polymorphisms and sequences of the  D 
loop of mitochondrial DNA (DI RIENZO et al. 1994 and 
references therein). These studies suggest that this pop- 
ulation has undergone  a  long  period of  size increase 
without immigration. If the Sardinian population has 
been  expanding in  size during  the last few thousand 
generations,  then  an allele excess, i e . ,  heterozygosity 
deJiciency, is expected (MARUYAMA and FUESRT 1984) in 
contrast to the allele deficiency/heterozygosity excess 
as  was seen in the wombat examples. Applying the pres- 
ent tests to the microsatellite data of DI RIENZO et al. 
(1994),  the results  were  highly significant in all four 
combinations of test X model of mutation; all 10 micro- 
satellite loci of the Sardinian population showed a large 
heterozygosity dejiciency for the IAM and SMM ( P  = 
0.000093 for  the L4M and P = 0.00014 for the SMM) 
and hence negative standard deviates ( T2 = 15.1 under 
the IAM and T2 = 47.7 under the SMM). 

The last example is drawn from a microsatellite sur- 
vey  of continental and island populations of bumble 
bees (ESTOUP et al. 1995a). No genetic differentiation 
among  the  continental populations was detected, sug- 
gesting large scale genetic exchanges across the Euro- 
pean  continent.  In contrast, Mediterranean island pop- 
ulations were  clearly differentiated, indicating that 
migration of bumble bees is almost impossible  over 
large distances across the sea. If the island population 
sizes  have not  been  pertubated in recent history, then 
rapidly  evolving loci, such as microsatellites, should be 
near  mutation drift equilibrium. Our tests, applied to 
the  population from Corsica island, showed no signifi- 
cant  departure from equilibrium in  all four combina- 
tions of  tests,  as expected  for populations at mutation- 
drift equilibrium. 

POWER ANALYSIS 

A statistical  power  analysis was conducted to assess 
the ability  of  Tests 1 and  2  to  detect bottlenecks under 
various conditions. Power is defined  here as the proba- 
bility  of detecting a heterozygote excess when a  recent 
bottleneck has occurred.  Once  more,  the analysis was 
performed by computer simulation of the coalescent 
process as described above, varying the following  pa- 
rameters: 

sample size (20, 40, 60, 80 and 100 sampled genes) 
time since the  beginning of the bottleneck (0.01, 
0.025,0.1,0.25, 1,2.5  and 10 multiplied by 2N,gener- 
ations) 
number of scored loci (5,10,15, and 20 polymorphic 
loci) 
effective population size ratio before/after  the bottle- 
neck (a = 10, 100, 1000) 
mutation model (IAM or SMM). 

For each set of parameters, 500 bottleneck simulation 
replicates were performed and the  number of times 
Test 1 or Test 2 was significant ( P  < 0.05) and in the 
“right” direction (overall heterozygosity excess) was re- 
corded. For each mutation model, two different ranges 
of  heterozygosities [O.O - 0.31 and [0.3 - 0.81 (at muta- 
tion drift equilibrium) were taken to compare  the per- 
formance of each test for different types  of genetic 
markers. At each iteration, loci were  assigned a  random 
prebottleneck  heterozygosity from a uniform distribu- 
tion within the range of [O.O - 0.31 or [0.3 - 0.81 and 
the  corresponding value  of B(H/ [ 1 - H ]  under the 
IAM or 0.5( [l - H]’* - 1) under the SMM)  was used 
to simulate mutations along  the edges of the  gene phy- 
logeny.  Only loci that were polymorphic in the sample 
(i .e. ,  after the  bottleneck) were retained. To save  com- 
puter time, the  three parameters necessary for  the tests 
(average heterozygosity, probability of finding a hetero- 
zygosity above the average and  standard deviation of 
the heterozygosity, assuming mutation drift equilib 
rium) were tabulated for all  necessary combinations of 
sample sizes and  number of  alleles, according to the 
same simulation procedures described earlier (distribu- 
tion of  heterozygosity under the null hypothesis). Fig- 
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ure 3, A and B, summarizes the results of the power 
analysis for the IAM and SMM, respectively. 

(1) The power is much  higher when loci evolve under 
the IAM than  under  the SMM. For example, power is 
0.8-1.0 for the I A M ,  but only 0-0.2 for  the SMM when 
0 < H < 0.3, a = 10, r = 1, and 20 loci and 60 genes 
are sampled. Thus to detect  a bottleneck with a high 
probability, one needs  more loci and larger sample sizes 
when using markers evolving under the SMM than with 
markers following the IAM. 

(2) With stronger bottlenecks (larger a) ,  the power 
increases, the time window during which detection is 
highly probable increases, and  the  period of maximum 
detectability (maximum power) is delayed to a  longer 
time after the bottleneck is initiated. This is true under 
both models. 

(3) The power increases with the  number of loci and 
with the sample size.  However, increasing the  number 
of loci is generally more effective than increasing the 
sample size. 

(4) Using markers with high heterozygosity (0.3 < 
H < 0.8) instead of  low heterozygosity (0.0 < H < 0.3) 
slightly increases the overall  power under the IAM but 
the reverse occurs under the SMM. Also, it moves the 
time  window  of maximum power  toward the  beginning 
of the bottleneck under  both models. For example, 
comparable power is obtained at time 0.25  (0.25 X 2N, 
generations after the bottleneck begins) with moder- 
ately variable markers and  at 0.1 X 2Ne with  highly  vari- 
able markers. This seems logical because more variable 
markers have higher  mutation rates and thus return to 
equilibrium more rapidly after a bottleneck. 

As expected from the difference in nature of the two 
tests (Test 1 is nonparametric, whereas  Test 2 is paramet- 
ric),  the overall  power  of  Test 2 was generally higher 
than that of Test 1. However, in the above combinations 
of parameters, the difference rarely exceeded 0.2. 

The same computer program was used to estimate 
the average  level of type I error by setting a = 1 ( i e . ,  
no bottleneck). Type I  errors  should occur in -5% of 
the tests for heterozygosity  excess when no bottleneck 
occurs in the simulation and when the level  of  signifi- 
cance used is 0.05. In over 35,000 replicate significance 
tests  based on 20 loci, we found  error rates of 4.8% 
( I A M )  and 2.2% (SMM) for Test 1 and 6.7% (IAM) 
and 3.3% (SMM) for Test 2. Hence,  both tests are 
slightly more conservative in rejecting the null hypothe- 
sis when the SMM is assumed. 

DISCUSSION 

We have presented  a  method for detecting  a  recent 
reduction of the effective population size in a popula- 
tion. This method is based on  the  property  that bottle- 
necked populations generally develop a transient heter- 
ozygosity  excess.  However, if loci  evolve under the strict 
one-step SMM, we observed that  both heterozygosity 

excess and deficiency can occur depending  on  the vari- 
ability of the locus and the time that has  passed since 
the bottleneck began (Figure 1B). We have evaluated 
the IAM and  the SMM because they represent two ex- 
treme models of mutation (CHAKRABORTY and JIN 
1992). Most loci probably evolve in an  intermediate 
way and we have  shown that  intermediate models of 
mutation reveal very little or no heterozygosity de$ciency 
in bottlenecked populations (Figure 1D).  Furthermore, 
population expansions cause almost exclusively hetero- 
zygosity deficiency. Thus  detecting  a significant hetero- 
zygosity  excess under the SMM can be taken as evidence 
that  a  population has been recently bottlenecked. 

A possible explanation of the  unexpected postbottle- 
neck heterozygosity  deficiency encountered  under  the 
strict SMM is the following. At mutation-drift equilib- 
rium, SMM loci  have generally contiguous allelic  states 
( i e . ,  allele lengths for microsatellite loci). Following a 
bottleneck, some “gaps” in the distribution of allelic 
lengths can occur due to limited random sampling of 
gametes and loss of alleles  having intermediate lengths. 
These gaps are much more likely  with higher  numbers 
of alleles. If these gaps are progressively “filled in” by 
mutations, there can be a transient excess of alleles ( i e . ,  
deficiency  of  heterozygosity) compared  to  a stationary 
population in which the allelic state distribution con- 
tains far fewer  gaps if any. 

The strict SMM is  obviously the most  conservative 
model for testing for a significant  heterozygosity  excess 
caused by bottlenecks because in some conditions it can 
produce a heterozygosity  deficiency and because the het- 
erozygosity  excess  is  always  lower than under  other muta- 
tion models. The SMM may also  be more conservative 
than the IAM because the type I  error rate for our statisti- 
cal  tests is slightly  lower than that of the IAM. 

The lower  statistical  power of the tests under the 
assumption of SMM compared to IAM (Figure 3, A and 
B) was consistent with the observation that  the SMM 
generates a smaller heterozygosity  excess than  the IAM 
(Figure 1, A and  B). Likewise, the larger power ob- 
tained under the SMM with  low  variability markers com- 
pared to highly  variable ones is consistent with the fact 
that for a given time after the bottleneck started, a 
larger heterozygosity  excess is observed at loci  with 
fewer  alleles (Figure 1B). 

The tests for heterozygosity  excess can detect bottle- 
necks for only a given  window of time after a bottleneck 
has been initiated. For example, power  analyses (Figure 
3, A and B) and theoretical models (Figure 1) suggest 
that  a bottleneck of Ne = 50 is  likely to be detectable 
for -25-250 generations (0.25-2.5 times 2Ne) after the 
initiation of a  population  reduction.  Thus only recent 
historical populations declines are detectable. 

Test assumptions: Both  tests  rely on  the assumption 
that each sample is representative of a well defined 
population, e.g., with no immigration and  no popula- 
tion substructure, and that loci are selectively neutral. 



J.-M. Cornuet and G. Luikart 

IAM 

2010 

A 

O<H<0.3 a=lO 
2-0.25 2 - 1  2-0. 1 

a= 1 00 
2=0.01 2-0.025 F O .  1 ~ 0 . 2 5  F 1  

k.cl 
20 
15 
10 

5 

20406080100  2040080100 204064 m 204060~1w 

a= 1 000 
z=o. 1 F 2  - 2=10 

k X 1  
20 

15 
10 

5 

2=0.01 

20 40 60 8 0 1 0 0  20 40 60 80100 
L 20 

40 60 8 0 1 0 0  20 40 60 80100 20 4 60 8 0 1 0 0  20 40 60 8 0 1 0 0  20 40 60 8 0 1 0 0  
sample she 

0.3<H<0.8 
2-0.025 

a=10 
2-1 2=0.0 1 2-0. 1 2-0.25 2-2.5 2=10 

6 0 B o . - -  2040 6080100 2040080100 

la i  
2 0 r r  I 

I 
20 40 60 8 0 1 0 0  20 40 60 80100 20 An 60 8 0 1 0 0  

0.3<H<0.8 
z=o.o 1 ~=0.025 

lDcr 
20 :kt, 10 20 40  60 80100 20 4 60 80100 

rampbshs 

a= 100 
2-1 

I .  
2-2.5 2=10 

20 40 60 8 0 1 0 0  

0.3<H<0.8 

"' 
a= 1 000 

2=10 

R G U E  3.-Combined  power  analysis  of the sign  test and regression  test for loci evolving under the IAM (A) and the SMM 
(B). Each of the six rows correspond to a given range of heterozygosity  (0-0.3 or 0.3-0.8) and a given strength of the bottleneck 
(a = ratio of effective population size before/after the bottleneck). For each such combination, the power was computed for 
five different sample sizes (20, 40, 60, 80 and 100 genes, Le., 10, 20,  30, 40 and 50 diploid individuals) and four different 
numbers of polymorphicloci (5 ,  10,15 and 20). The combined power, computed over  500  replicates in every  specific combination, 
is represented by a color scale (bottom of figure). Power  is defined as the proportion of bottleneck simulation  replicates for 
which at least one of the two tests was significant and  in  the expected direction (heterozygosity excess). 
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Recent  immigration may be particularly  misleading. examples, we chose  human or bumble  bee  populations 
This is  especially true if immigrants come  from a popu- in which recent immigration was unlikely. A similar  bias 
lation that is genetically  divergent,  because  these  immi- can  arise if the sample  includes  individuals from two or 
grants  could  quickly  increase the number of rare alleles more actual  populations (population substructure) or 
in the population without  substantially  affecting the hybrids  between  populations. Another (minor) source 
heterozygosity,  mimicking an increase (or hiding a de- of error is the presence of undetected (null) alleles at 
crease) of the population size. This is  why in selecting some  loci. All such  situations  can be generally detected 
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by testing for Hardy-Weinberg equilibrium or the sig- 
nificance of the F-, statistic. These tests should  be per- 
formed systematically before applying tests for heterozy- 
gosity  excess. 

Another assumption is the  independence of the re- 
sults among pairs of loci. This is achieved if all loci 
scored on a given sample are genetically independent, 
although this condition may not be necessary. Our pre- 
liminary simulation studies suggest that, in a  population 
at equilibrium, correlations between numbers of  alleles 
or between  heterozygosities are negligible whenever 
loci are not tightly linked (e.g., percentage of recombi- 
nation >0.1). However, to be conservative, one  should 
use  only one locus of a pair of loci in linkage disequilib- 
rium. 

Because  of  its nonparametric  nature, Test 1 does  not 
require any further assumptions and can be used  with 
a small number of loci. In contrast, the application of 
Test 2 is more restrictive since the statistics T2 a p  
proaches a Gaussian distribution only  as the sample size 
of  loci becomes large ( i e . ,  >20). Note that most data 
sets, such as those presented as examples, may not have 
enough polymorphic loci for this test to  be valid.  Results 
in which the set  of polymorphic loci is small  (say <20) 
and only  Test 2 is significant should be considered with 
caution. Such is the case  of the  southern hairy-nosed 
wombat population  (second example above) when  all 
loci are assumed to fit the SMM. Because microsatellite 
loci, such as those scored in the  southern hairy-nosed 
wombat example, are likely to evolve predominantly 
under the SMM (SHRIVER et al. 1993), it seems reason- 
able to only consider the results of the tests under the 
SMM and  not to reject the mutation drift equilibrium 
null hypothesis for this population. 

Both  tests can be applied assuming that all loci in a 
given sample fit the same mutation model. However, if 
there is evidence that some loci fit the I A M ,  whereas 
others fit the SMM, combining both kinds of loci is 
straightforward for both Test 1 and Test 2. 

Choice of marker loci: When considering the results 
of the power  analysis, there is no definite advantage in 
using highly  variable markers: power is slightly in- 
creased under  the IAM and decreased under the SMM 
for highly  variable markers relative to moderately vari- 
able markers. However, this computation was based 
only on polymorphic loci, i.e., all monomorphic loci 
arising in the simulated samples were disregarded. Ob- 
viously, the  abundance of polymorphic loci  in a postbot- 
tleneck sample will be larger when using highly  variable 
marker loci. Consequently, more loci will have to be 
scored to find a sufficient number of polymorphic loci 
with moderately variable markers than with  highly  vari- 
able markers. Moreover, if the  population has suffered 
a severe  size reduction, only  highly  variable markers will 
still be polymorphic. However, using the most  variable 
markers may not be the best solution in  all  cases, since 
these loci evolve rapidly and  hence  return back to equi- 

librium relatively  quickly. Thus rapidly  evolving markers 
(e.g., microsatellites) will be more useful for detecting 
relatively recent bottlenecks, whereas  less  rapidly  evolv- 
ing markers (e.g., allozymes) will be more useful for 
detecting less recent bottlenecks. 

Allozyme markers may be less appropriate for testing 
for bottlenecks because they often exhibit relatively few 
alleles and low heterozygosity,  especially  in large mam- 
mals and birds. They are also  less  likely to be selectively 
neutral  than  are DNA  level markers (SING et al. 1973; 
WATT 1977; KARL and AWE  1992; POGSON et al. 1995). 
It is possible that balancing selection could promote 
high heterozygosity  (with few alleles) and thereby cause 
a heterozygosity  excess  in the absence of a population 
bottleneck. However, it seems  unlikely that balancing 
selection would affect a majority of allozyme  loci and 
thereby cause a significant overall  heterozygosity  excess 
in a large sample of loci. 

Micro- and mini-satellite  loci (VNTRs or variable 
number of tandem repeats) are probably the best  mark- 
ers currently available for detecting  recent bottlenecks 
because of their generally high level  of  variability. Mi- 
crosatellites with  3- to 5-bp repeats are  thought to evolve 
predominantly under the single-step SMM (SHRWER et 
al. 1993) and therefore  should be less suitable than 
microsatellites with shorter repeats for which the muta- 
tion model usually includes multiple-step mutation 
events (DI RIENZO et al. 1994) and is hence closer to 
the IAM. Interrupted microsatellites (ESTOUP et al. 
1995b) or compound microsatellites with  motifs of dif- 
ferent lengths (ESTOUP et al. 1995c) are likely to fit the 
IAM better  than  pure  repeat microsatellites, and hence 
to  be  among the most  useful markers for detecting bot- 
tlenecks. 

Sampling more  loci vs. individuals: The statistical 
power  of the bottleneck tests can be increased by 
screening more loci or by sampling more genomes ( i .e . ,  
individuals). However, there is a  higher power benefit 
of analyzing more loci than  more genomes for both 
tests.  For instance, the only way for Test 1 to be signifi- 
cant with  five loci is for all  loci to have an heterozygosity 
excess, whereas by using three  more loci, the test can 
be significant with either seven or eight loci  having a 
heterozygosity  excess. On the  other  hand, increasing 
the sample size  of genomes will only increase the preci- 
sion  of the estimate of heterozygosity  excess at each 
individual locus. Also, because Test 2 requires a mini- 
mum number of loci to be valid, sampling more loci is 
more  important  than sampling more individuals. Al- 
though sampling more loci  provides the greatest power 
benefit, it is still important to sample at least 40 haploid 
genomes (20 diploid individuals) to achieve  reasonably 
high power (Figure 3,  A  and B). 

Applications of bottleneck tests In conservation bi- 
ology, the most important type of bottleneck to detect 
is a severe and rapid decline from large Ne. Severe p o p -  
lation declines are also the type of bottleneck most 
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likely to be  detected by our bottleneck tests.  Severely 
bottlenecked populations are  important to identify for 
conservation because they are likely to suffer from in- 
breeding depression, loss  of genetic variation, fixation 
of deleterious alleles  as well as increased demographic 
stochasticity  all  of  which can  reduce adaptive potential 
and  the probability of population persistence (LANDE 
1994; MILLS and SMOUSE  1994; FRANKHAM 1995a and 
citations therein). 

Many  wild populations around  the world are suffer- 
ing  demographic bottlenecks (reduction of census size) 
and genetic bottlenecks (reduction of Ne) resulting 
from habitat fragmentation and insularization. It is im- 
portant  to recognize that populations suffering a reduc- 
tion in census size  may not suffer a severe reduction of 
Ne (a genetic bottleneck) if historical Ne has always been 
low due to fluctuations in population size, mating sys- 
tem  dynamics (e.g., polygyny or inbreeding),  or meta- 
population  structure involving  local extinctions and re- 
colonizations (PIMM et al. 1989). Our analysis of the 
northern hairy-nosed wombat data suggests that  the Ep- 
ping  population did have a large historical Ne and has 
recently suffered a severe genetic bottleneck along with 
the well documented  demographic bottleneck. Thus, 
the tests can help identify which populations have  suf- 
fered  a severe reduction of Ne along with a  reduction 
of census size, and thereby help identify populations at 
high risk  of extinction due to genetic factors in addition 
to risks due to demographic factors. 

The tests  may  also help  detect bottlenecks associated 
with natural colonization events, and  help resolve the 
debate over  which models of founder speciation are 
most consistent with data from natural populations. Sev- 
eral different models of founder speciation have been 
proposed  (for reviews see Harrison 1991 and HOWARD 
1993). Some models involve a substantial reduction of 
allelic variation and heterozygosity (MAYR 1954; CARSON 

1959).  Other models (CARSON 1971; TEMPLETON 1980) 
involve severe but short-term founder events that re- 
duce allele variation (mainly rare alleles) without sub- 
stantially reducing heterozygosity.  Because  tests for a 
heterozygosity  excess can detect severe, short-term 
founder events, they may help  determine which models 
of founder speciation are consistent with colonization 
events observed in nature. 

As shown in example three (Sardinian human  popu- 
lation), populations increasing in size from a small Ne 
can also be  detected with our statistical  tests, because 
expanding populations are characterized by loci exhib 
iting a heterozygosity deficiency (WUYAMA and 
FUERST  1984, our Figure 1C). When testing for a  recent 
increase of population size, the most conservative muta- 
tion model is obviously the IAM because it provides the 
lowest estimate of expected equilibrium heterozygosity 
for a given number of  alleles  observed in a sample. 

Incidentally, Test 1 and Test 2 can be used to deter- 
mine which mutation model (IAM or SMM) best fits a 

set of genetic markers. For example, if a  population is 
assumed to be at  mutationdrift equilibrium for  a set of 
markers, then it is possible to compare the observed 
heterozygosity  with the theoretical distribution of heter- 
ozygosity under each model and possibly reject one of 
the two mutation models. We provide then  an  approach 
that is complementary to previous  analyses for evaluat- 
ing  mutation models relative to microsatellite data 
(DEKA et al. 1991; SHRIVER et al. 1993;  VALDES et al. 1993; 
DI RIENZO et al. 1994). As already noted,  our tests,  based 
on the comparison between observed and expected het- 
erozygosity,  use an  approach similar to the EWENS- 
WATTERSON  test  (WATTERSON 1978) that compares ho- 
mozygosities.  But the  latter tests for neutrality assuming 
mutation-drift equilibrium [or a  change in population 
size for which characteristics are perfectly  known as in 
WATTERSON (1986)] for a single marker locus and is 
limited to  the L4M; whereas our approach tests for mu- 
tation drift equilibrium assuming neutrality and it bases 
conclusions on the statistical behavior of an  entire set 
of markers under the IAM or the SMM. 
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